
Around(J2)ME
http://aroundj2me.googlecode.com

Braunhofer Matthias (3098), Strumpflohner Juri (3195)

Mobile Services

Free University of Bozen-Bolzano

June 9, 2009

Abstract

This report describes the Around(J2)ME midlet application that
has been developed as a project for the Mobile Services course at the
Free University of Bozen-Bolzano. The aim of the application is to
provide information what is around the user (e.g. banks, bars, pubs,
restaurants) using the mobile phone’s current location. In partic-
ular, the report presents the system functionalities, the architecture,
the user interface, development strategies and technical problems that
have been discovered during development.

1

http://aroundj2me.googlecode.com

Around(J2)ME Contents

Contents

1 System functionalities 3
1.1 General description of the major user functions 3
1.2 Use case diagram . 3
1.3 Detailed description of the use cases 4

2 Architecture 6
2.1 Used libraries and software tools 6
2.2 Internal logic . 6

2.2.1 Package “com.aroundj2me.main” 7
2.2.2 Package “com.aroundj2me.location” 8
2.2.3 Package “com.aroundj2me.controller” 9
2.2.4 Package “com.aroundj2me.model” 10
2.2.5 Package “com.aroundj2me.view” 12
2.2.6 Package “com.aroundj2me.executableTasks” 14
2.2.7 Package “com.aroundj2me.utility” 15
2.2.8 Package “com.aroundj2me.xml” 16
2.2.9 Package “com.aroundj2me.uicomponents” 16

2.3 Client - Server communication 17
2.4 MVC like structuring . 17

3 User interface 19

4 Development strategies 22
4.1 Handling location data . 22
4.2 JUnit testing . 22
4.3 ExecutableTask “pattern” . 23
4.4 The ScreenController - managing Displayables 23

5 Technical problems 25
5.1 Location API - Landmark, LandmarkStore and Categories . . 25

6 Future development 26

2

Around(J2)ME 1 System functionalities

1 System functionalities

1.1 General description of the major user functions

Around(J2)ME is a location-based J2ME application that uses the phone’s
current location in order to provide all nearby places that are either belonging
to a pre-defined category (e.g. banks, bars, pubs, restaurants, taxis, theaters,
parking) or that match a certain search criteria (e.g. name, description, ad-
dress). Similar to a car navigation system, the user is able to connect to
the Around(J2)ME-server to download location-related data organized into
continents (i.e. Africa, Asia, Europe, North America and South America) to
the mobile device. The user can then browse the retrieved locations offline
without having to rely on network connectivity. Furthermore the current
position and the place of interest can be displayed on a Google Map for a
better understanding of its location.

1.2 Use case diagram

Figure 1: Use case diagram

3

Around(J2)ME 1 System functionalities

1.3 Detailed description of the use cases

Name Find nearby places
Description The user has the possibility to select a cate-

gory from a list of possible ones (e.g. banks,
bars, pubs, restaurants, taxis, theaters, park-
ing) which are provided by the application. By
choosing a category, the application will retrieve
all places that are nearby the user’s current po-
sition.

Table 1: Find nearby places

Name Find nearby places by category
Description The user has the possibility to select a cate-

gory from a list of possible ones (e.g. banks,
bars, pubs, restaurants, taxis, theaters, park-
ing) which are provided by the application. By
choosing a category, the application will retrieve
all places that are nearby the user’s current po-
sition.

Table 2: Find nearby places by category

Name Find nearby places by search criteria
Description The user can open a search form on the mobile

phone where he can enter a search query. By
clicking on the search button, a search for places
matching the entered search query and being
around the current location of the user will be
done and the result displayed to the user.

Table 3: Find nearby places by search criteria

4

Around(J2)ME 1 System functionalities

Name View place
Description By clicking on the different places on the list,

found by one of the different possibilities (see
use cases 1, 2 and 3), the user can view the
details about that place. This detail view
shows information such as the distance from the
user’s current position, address information (i.e.
street, city,. . .), contact information such as the
phone number and a short textual description
about the place of interest.

Table 4: View place

Name View place on map
Description When viewing a place found by one of the dif-

ferent possibilities (see use cases 1, 2 and 3), the
user can display this place on a map.

Table 5: View place on map

Name Manage location data
Description All of the location data is managed locally on

the device. The user can manage this data
by retrieving/updating it from the server. The
places can be downloaded for each continent in-
dipendently.

Table 6: Manage location data

5

Around(J2)ME 2 Architecture

2 Architecture

2.1 Used libraries and software tools

The following table shows the tools and libraries that have been used for
the development of the Around(J2)ME application.

Name Description URL

Eclipse Main development IDE http://www.eclipse.org

WTK Sun Wireless Toolkit http://java.sun.com/

products/sjwtoolkit/

download.html

MTJ Eclipse plugin Mobile Tools for Java
(former EclipseME)

http://www.eclipse.org/

dsdp/mtj/

Apache
Tomcat

Used webserver http://tomcat.apache.org/

kXML2 XML pull parser library http://kxml.sourceforge.

net/

J2MEUnit Unit testing library for J2ME http://j2meunit.

sourceforge.net/

JSR-179 Location API http://jcp.org/en/jsr/

detail?id=179

Table 7: libraries and tools used for development

2.2 Internal logic

This section describes the internal logic of the application in terms of
appropriate UML diagrams.

6

http://www.eclipse.org
http://java.sun.com/products/sjwtoolkit/download.html
http://java.sun.com/products/sjwtoolkit/download.html
http://java.sun.com/products/sjwtoolkit/download.html
http://www.eclipse.org/dsdp/mtj/
http://www.eclipse.org/dsdp/mtj/
http://tomcat.apache.org/
http://kxml.sourceforge.net/
http://kxml.sourceforge.net/
http://j2meunit.sourceforge.net/
http://j2meunit.sourceforge.net/
http://jcp.org/en/jsr/detail?id=179
http://jcp.org/en/jsr/detail?id=179

Around(J2)ME 2 Architecture

Figure 2: Packages

2.2.1 Package “com.aroundj2me.main”

Figure 3: Packages

7

Around(J2)ME 2 Architecture

Class Description

AroundJ2ME This is the application MIDlet and is the entry
point of the Around(J2)ME application. This class
is responsible for starting up the application and
for calling the appropriate application initializa-
tion methods.

2.2.2 Package “com.aroundj2me.location”

Figure 4: Packages

Name Description

LocationService The LocationService is the central point of inter-
action with the JSR-179 Location API. It provides
methods for retrieving the current location as well
as for storing and retrieving Landmark objects to
and from the LandmarkStore.

8

Around(J2)ME 2 Architecture

2.2.3 Package “com.aroundj2me.controller”

Figure 5: Packages

Name Description

ApplicationController This class contains the main domain logic. It is
the main point of interaction between the user in-
terface. Each user interface class contains a ref-
erence to the ApplicationController. For more de-
tails about this MVC-like structure refer to section
2.4.

ScreenController The ScreenController class is responsible for man-
aging the different kind of J2ME Displayable ob-
jects on the UI. All the displaying and remov-
ing of Displayable objects is done over this class.
This guarantees to have a single point of han-
dling UI windows and a clean structure throughout
the application. For managing the different Dis-
playable’s, this class uses a Stack (java.util.Stack)
datastructure. Moreover it includes convenient
functionalities such as to automatically add a
“back” command to the Displayable that is being
displayed. More in section 4.4

9

Around(J2)ME 2 Architecture

2.2.4 Package “com.aroundj2me.model”

Figure 6: Packages

Name Description

Place This is the class for holding data of a place re-
trieved from the local landmark store that is being
displayed on the UI to the user.

10

Around(J2)ME 2 Architecture

Name Description

ContinentPack This class is used for transporting the data about
installed continents.

ExecutableTask This abstract class is being inherited by classes
that encapsulate so-called “executable tasks”.
This is a pattern that has been used in the
Around(J2)ME application for handling threaded
code in a uniform and convenient way. For more
information please refer to section 4.3.

TaskProcessListener This is an abstract class that is used for attach-
ing to the execution of an ExecutableTask for get-
ting notified about the successful termination or
occurence of errors.

Constants This class contains commonly used constants
throughout the application

CategoryName This is a class containing all of the category names
as constant strings in order to have a central point
in the program for changing category names.

ContinentName Similar to the CategoryName, this class holds con-
stant strings for all of the available continents.

Messages This class holds the messages that are being dis-
played to the user on the UI.

BackCommand This class extends the
javax.microedition.lcdui.Command class and
is used by the ScreenController to automatically
hook a “back” command on the Displayable objec
that is being shown on the UI.

11

Around(J2)ME 2 Architecture

2.2.5 Package “com.aroundj2me.view”

Figure 7: Packages

Class Description

IView This is the interface that is implemented by all
of the view classes defined in the application.
This construct facilitates the easy construction
and reuse of view objects in the application.

CategoryListView This is the UI list where all of the available cat-
egories are displayed to the user. The user can
choose a category for getting all of the according
places.

12

Around(J2)ME 2 Architecture

Class Description

ContinentListView This is the list showing all the available conti-
nents. Here the the user can download or update
his places from the server. Appropriate icons show
whether a certain continent with its data is already
installed or whether it has still to be downloaded.

MapView This view shows a Google Map with the current
position of the user marked with a red point and
the desired place with a blue point.

PlaceListView This is the list displayed to the user with all of the
retrieved nearby places.

PlaceView On this view, the details about the selected pace
such as the title, description, address etc. . . are dis-
played to the user.

SearchView This is the view where the user can enter search
queries for retrieving nearby places.

SplashScreen This is the initial splash screen that is shown dur-
ing initialization at the application startup.

AboutForm This is a view for showing information related to
the Around(J2)ME application such as the version
and the authors.

IProgressForm This is the interface for views showing progress
information to the user. It defines the methods
that should be implemented.

ProgressForm This class implements IProgressForm and displays
a progress bar together with a status message for
informing the user about the ongoing operations.

13

Around(J2)ME 2 Architecture

2.2.6 Package “com.aroundj2me.executableTasks”

Figure 8: Packages

All of the classes extend the abstract class “ExecutableTask”. For more
information about this kind of pattern see section 4.3.

Class Description

PlaceFinder This class is responsible for reading the places that
match the current user’s location from the local
landmark store.

ContinentRetriever This class is responsible for establishing a connec-
tion to the server and for downloading the accord-
ing data for the continent chosen by the user.

GoogleMapsRetriever This class is responsible for contacting the Google
Maps API for retrieving the map for displaying the
user’s location and selected point of interest.

14

Around(J2)ME 2 Architecture

2.2.7 Package “com.aroundj2me.utility”

Figure 9: Packages

Name Description

ImageLoader This class provides static constants with the uri
to the corresponding images and a static utility
method for loading them and creating the accord-
ing in-memory image object.

StringUtils This class contains utility methods for working
with strings which are missing in the J2ME library
such as replace and split methods.

HttpCommunicator This class provides the logic for performing HTTP
calls and for reading the returned data.

AlertCreator This class contains utility methods for creating
various Alert objects to be displayed on the screen.

15

Around(J2)ME 2 Architecture

2.2.8 Package “com.aroundj2me.xml”

Figure 10: Packages

Name Description

XMLDecoder This class is responsible for parsing XML docu-
ments by using the XML pull parser technology
(kXML).

2.2.9 Package “com.aroundj2me.uicomponents”

Figure 11: Packages

16

Around(J2)ME 2 Architecture

Name Description

HLine This is a custom UI component that is used for
drawing a horizontal line on the screen in order to
separate different UI parts.

ImageButton This class is a custom UI component that draws
an image button on the UI.

2.3 Client - Server communication

The main application logic is performed offline, without relying on a
server for providing the data. The only communication with the server is
for downloading the location data to the client where it is then stored for
performing operations locally.

The application connects to the server by performing a HTTP GET op-
eration passing the continent as parameter. The server processes the request
and encodes the result as XML file which is sent back to the mobile client.
There the result is parsed by using the kXML parser and stored locally inside
a LandmarkStore.

Figure 12: Free form diagram showing the client - server communciation

2.4 MVC like structuring

For separating the user interface logic, the domain logic and the model
classes, a very simplified MVC like structure has been used. Mostly the
concept of the layering and decoupling has been taken from the MVC pattern.

• Controller
The ApplicationController class plays the role of the controller. All of
the calls to the actual application logic go through this class. It func-
tions as a mediator that gets the UI actions initiated from the user’s

17

Around(J2)ME 2 Architecture

interaction, executes the appropriate actions on the different domain
classes (model) and then displays the changed model data again on the
user interface.

• Model
The model part of the MVC is represented by the classes in the com.aroundj2me.model
package. These are the classes that contain the data that is being dis-
played (by the ApplicationController) on the UI.

• View
The view part is represented by the classes in the com.aroundj2me.view
package. All of these classes contain mainly user interface related logic
such as constructing the appropriate elements for showing the data and
for handling user events.

It has to be stated that a full implementation of the MVC pattern has
been avoided for minimizing the amount of objects that are involved in such
a structure. The MVC1 or MVP2 model in a J2SE or J2EE environment
involves a lot of objects and event handling which could pose a possible over-
head on the mobile device.

1http://blog.js-development.com/2008/03/logical-separation-with-mvc.
html

2http://martinfowler.com/eaaDev/ModelViewPresenter.html, http://msdn.
microsoft.com/en-us/library/cc304760.aspx

18

http://blog.js-development.com/2008/03/logical-separation-with-mvc.html
http://blog.js-development.com/2008/03/logical-separation-with-mvc.html
http://martinfowler.com/eaaDev/ModelViewPresenter.html
http://msdn.microsoft.com/en-us/library/cc304760.aspx
http://msdn.microsoft.com/en-us/library/cc304760.aspx

Around(J2)ME 3 User interface

3 User interface

This section shows some screenshots presenting the main functionalities
of the Around(J2)ME application.

(a) Main menu (b) Manage places

(c) Places search (d) Information message

Figure 13: Screenshots showing the main functionalities

19

Around(J2)ME 3 User interface

(a) Places by category (b) Nearby places

(c) Place detail view (d) Progress indicator

Figure 14: Screenshots showing the main functionalities

20

Around(J2)ME 3 User interface

(a) Map view normal (b) Map view satellite

(c) Map view hybrid

Figure 15: Screenshots showing the main functionalities

21

Around(J2)ME 4 Development strategies

4 Development strategies

4.1 Handling location data

Location data is managed by heavily using the JSR-179 Location API.
Places are represented by the Location API’s Landmark class, which are
stored inside a LandmarkStore together with appropriate categories. There
is one landmark store for each continent.

When the user wants to retrieve places around his current position by one
of the available functionalities (either through a search, by a certain category
or just all nearby places), the local landmark stores are queried for locations
of about 3 kilometers around the user’s current position.

4.2 JUnit testing

The J2MEUnit3 library has been used for writing JUnit tests for the
mobile device. This ensured the proper working of the implemented features
during the development lifecycle.

Figure 16: JUnit tests running on the WTK simulator

3http://j2meunit.sourceforge.net/

22

Around(J2)ME 4 Development strategies

4.3 ExecutableTask “pattern”

When developing J2ME applications there are always again operations
that have to be launched inside a separate thread in order to first not block
the main user interface and second to be able to provide valuable information
at the same time to the user, e.g. a progress window about the ongoing
operation. In order to have the same reusable structure for handling these
threaded operations throughout the Around(J2)ME application, a so-called
“Executable task pattern” has been created.

The base classes involved in this construct are the ExecutableTask and
the TaskProcessListener. Both are abstract classes and get implemented by
the actual executable task classes (see section 2.2.6). The ExecutableTask
implements the runnable interface for being launched inside a thread and
it accepts a TaskProcessListener for being notified about the status of the
ongoing operation.

Executing an operation that extends the ExecutableTask class can then
be handled in this simple way:

executableTask . s e t L i s t e n e r (new TaskProces sL i s tener () {
public void onError (S t r ing s t a t u s) {

//an error happened , n o t i f y the user
}

public void ta skF in i shed (Object r e s u l t) {
// ev e r y t h in g went f i n e . .
//do something wi th the ‘ ‘ r e s u l t ’ ’

}
}) ;
. .
Thread t = new Thread (executableTask) ;
t . s t a r t () ;

4.4 The ScreenController - managing Displayables

Mobile phones don’t dispose of a multi-window environment as in nor-
mal desktop environments. Always just one window at a time can be shown
on the display where users can usually navigate forward and backward be-
tween different windows. This kind of behaviour matches perfectly a stack
datastructure: if the user navigates to a new screen, the current screen will
be pushed on the stack. When the user activates the back button, the last
screen will be popped from the stack and again displayed.

23

Around(J2)ME 4 Development strategies

These kind of operations are managed by the ScreenController. It is a
singleton class that is used throughout the Around(J2)ME application as a
central point for handling display related operations.

24

Around(J2)ME 5 Technical problems

5 Technical problems

5.1 Location API - Landmark, LandmarkStore and Cat-
egories

One of the major technical issues that have been encountered during
development was a problem with the JSR-179 Location API. Around(J2)ME
uses categories such as “Bars, Restaurants, Pubs, Hotels,. . . ” for organizing
places. These categories are associated to the landmarks when they are
persisted in the LandmarkStore. When retrieving a certain landmark from
the store it is however not possible to know which kind of category it has
associated. A Landmark object has an array of associated categories but
provides no public accessor for retrieving it.

Figure 17: Landmark’s categories array not publicly accessible

Such information is however needed by the Around(J2)ME application.
When the user retrieves nearby places without any restriction, he would
like to know immediately which kind of category a found place belongs to.
For instance whether it is a bar, pub or restaurant. As a workaround, the
description field of the Landmark class has been used to store the category
information.

25

Around(J2)ME 6 Future development

6 Future development

Future development of the application could go in the direction of ex-
tending the server logic for providing features like

• letting the user enter new interesting places locally and submit them
to the server.

• letting the user rate/comment places (i.e. rate restaurants, pubs, bars. . .)

Another feature could be to enhance the navigation support, that is, en-
hancing the Google Map to continuously track and update the user’s position
on the map by exploiting the LocationListener of the JSR-179 Location API.

26

	System functionalities
	General description of the major user functions
	Use case diagram
	Detailed description of the use cases

	Architecture
	Used libraries and software tools
	Internal logic
	Package ``com.aroundj2me.main''
	Package ``com.aroundj2me.location''
	Package ``com.aroundj2me.controller''
	Package ``com.aroundj2me.model''
	Package ``com.aroundj2me.view''
	Package ``com.aroundj2me.executableTasks''
	Package ``com.aroundj2me.utility''
	Package ``com.aroundj2me.xml''
	Package ``com.aroundj2me.uicomponents''

	Client - Server communication
	MVC like structuring

	User interface
	Development strategies
	Handling location data
	JUnit testing
	ExecutableTask ``pattern''
	The ScreenController - managing Displayables

	Technical problems
	Location API - Landmark, LandmarkStore and Categories

	Future development

